Nanosat Technology And Managed Risk; An Update Of The CYGNSS Microsatellite Constellation Mission Development

نویسندگان

  • Randy Rose
  • Will Wells
  • Debi Rose
چکیده

Existing and forecasted budget constraints continue to drive innovative solutions for space-based mission applications. NASA’s Earth science mission, the Cyclone Global Navigation Satellite System (CYGNSS) was selected as part of NASA's Earth Venture program with a total mission cost cap (excluding launch vehicle) of $103M. Performing valuable science at low cost is only possible given technology innovation and a development risk posture higher than typically accepted for NASA missions. CYGNSS is being designed to address present tropical cyclone intensity forecasting deficiencies. These deficiencies are thought to be the root cause for essentially no improvement in the accuracy of the storm’s intensity prediction (Classification and Category levels) since 1990 while tropical storm track forecasts have improved in accuracy by ~50%. The mission will combine the all-weather performance of GNSS bi-static ocean surface scatterometry with the sampling properties of a satellite constellation to provide science measurements never before available to the tropical cyclone operational and research communities. The mission cost cap dictates that the CYGNSS flight segment of 8 Observatories, each carrying a 4-channel GPSbased scatterometer, all be launched on a single launch vehicle. The mission will demonstrate how recent developments in nanoand micro-satellite technology integration, including recent developments in star trackers and reaction wheels, when combined with a managed risk approach, can be applied as cost effective solutions to fill capability voids of large-scale observatories. CYGNSS will also demonstrate low cost science mission operations, how to safely deploy a constellation from a single launch vehicle without collision, and a low-cost method for constellation configuration management. The CYGNSS SmallSat 2014 paper will provide an update of the mission system development status, an overview of how a synergistic approach between flight and ground segments enables a cost effective science mission solution, and a description of our approach to constellation configuration control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Tropical Cyclone Integrated Kinetic Energy with the CYGNSS Satellite Constellation

The Cyclone Global Navigation Satellite System (CYGNSS) constellation is designed to provide observations of surface wind speed in and near the inner core of tropical cyclones with high temporal resolution throughout the storm’s life cycle. A method is developed for estimating tropical cyclone integrated kinetic energy (IKE) using CYGNSS observations. IKE is calculated for each geographically b...

متن کامل

The NASA CYGNSS Mission; A Pathfinder for GNSS Scatterometry Remote Sensing Applications

Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing p...

متن کامل

Determining Tropical Cyclone Surface Wind Speed Structure and Intensity with the CYGNSS Satellite Constellation

The Cyclone Global Navigation Satellite System (CYGNSS) consists of a constellation of eight microsatellites that provide observations of surface wind speed in all precipitating conditions. A method for estimating tropical cyclone (TC) metrics—maximum surface wind speed VMAX, radius of maximum surface wind speed RMAX, and wind radii (R64, R50, and R34)—from CYGNSS observations is developed and ...

متن کامل

Application for RSO Automated Proximity Analysis and IMAging (ARAPAIMA): Development of a Nanosat-based Space Situational Awareness Mission

ARAPAIMA is a proximity operations mission sponsored by the US Air Force Office of Scientific Research (AFOSR) and the Air Force Research Laboratory (AFRL), to perform the in-orbit demonstration of autonomous proximity operations for visible, infrared, and point cloud generation of resident space objects (RSOs) from a nanosat platform. The nanosat is of the 6U CubeSat class, with overall dimens...

متن کامل

Possible Orbit Scenarios for an InSAR Formation Flying Microsatellite Mission

Multistatic interferometric synthetic aperture radar (InSAR) is a promising future payload for a small satellite constellation, providing a low-cost means of augmenting proven “large” SAR mission technology. The Space Flight Laboratory at the University of Toronto Institute for Aerospace Studies is currently designing CanX-4 and CanX-5, a pair of formation-flying nanosatellites slated for launc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014